Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼
Startseite der Einrichtung
Abb.: Philipp Plum

Presseportal

Topologischer Schutz versus Grad der Verschränkung von Zwei-Photonen-Licht in photonischen topologischen Isolatoren

Ein internationales Forschungsteam hat notwendige Kriterien für den robusten Transport von verschränktem Zwei-Photon-Licht in photonischen topologischen Isolatoren herausgearbeitet. Die Studie ist nun in „Nature Communications“ erschienen

In gemeinsamer Arbeit haben Forscher der Humboldt Universität zu Berlin, des Max-Born-Institut Berlin und der University of Central Florida (USA) notwendige Kriterien für den robusten Transport von verschränktem Zwei-Photon-Licht in photonischen topologischen Isolatoren herausgearbeitet, was den Weg ebnet hin zum rausch-resistenten Transport von Quanteninformationen. Die Ergebnisse sind nun in „Nature Communications“ erschienen.

Topologische Isolatoren - ursprünglich in Festkörpersystemen entdeckt – sind zwei-dimensionale Materialien, die streuungs-freien (uni-direktionalen) Transport entlang ihres Randes erlauben, sogar im Beisein von Defekten und Unordnung. Im Wesentlichen sind topologische Isolatoren endliche Kristallgittersysteme in denen sich, mit passender Terminierung des zugrundeliegenden unendlichen Gitters, Randzustände bilden, welche innerhalb einer wohl-definierten Bandlücke zwischen den Volumenzuständen liegen. Mit anderen Worten, die Randzustände sind von den Volumenzuständen energetisch separiert.

Die Einzelteilchen-Randzustände in solchen System sind von herausragender Bedeutung, da diese topologisch vor Streuung geschützt sind: Sie können weder in den Festkörper streuen, da ihre Energie in der Bandlücke liegt, noch können sie rückwärts streuen, weil rückwärts propagierende Randzustände entweder nicht existieren oder nicht an die vorwärts propagierenden Zustände gekoppelt sind.

Die Realisierbarkeit komplexer Hamilton-Operatoren mithilfe integrierter photonischer Gitter, kombiniert mit der breiten Verfügbarkeit von verschränkten Photonen, eröffnet die faszinierende Möglichkeit topologisch-beschützte, verschränkte Zustände in der optischen Quanteninformationsverarbeitung zu verwenden (siehe z.B. Science 362, 568, (2018) und Optica 6, 955 (2019).

Dieses Ziel zu erreichen ist jedoch nicht trivial, denn topologischer Schutz lässt sich nicht ohne weiteres auf Mehrteilchen (Rück-)streuung ausweiten. Zunächst erscheint dies kontraintuitiv, denn individuell ist jedes der Teilchen per Topologie beschützt, jedoch können verschränkte (korrelierte) Teilchenpaare höchst anfällig gegenüber Störungen des idealen Kristallgitters sein. Das zugrundeliegende physikalische Prinzip dieser offensichtlichen “Diskrepanz” ist, dass – quantenmechanisch gesehen – identische Teilchen durch Zustände beschrieben werden, die einer Austauschsymmetrie genügen.

Publikation

Topological protection versus degree of entanglement of two-photon light in photonic topological insulators, Konrad Tschernig, Álvaro Jimenez-Galán, Demetrios N. Christodoulides, Misha Ivanov
Kurt Busch, Miguel A. Bandres, Armando Perez-Leija, Nature Communications.

Link zur Studie 

Weitere Informationen

Zur vollständigen Pressemitteilungen auf der Webseite des Max-Born-Instituts

Werbung